
	

	

	

	
EGRE	364	–	Microcomputer	Systems	

	

Final	Project	

Final	Design	Report	
	

Jose	Ramirez	

Quan	Ma	
			

	

	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	2	of	56	
		

Abstract:	

The	purpose	of	this	report	is	to	outline	the	motivation,	goals,	and	criteria	that	was	necessary	for	completing	the	
EGRE	364	Final	Design	Project.	This	project	consisted	s	of	designing	and	implementing	an	embedded	system,	
more	specifically	an	autonomous	robot	that	is	capable	of	navigating	through	a	maze,	follow	a	black	line	drawn	
on	a	white	surface,	and	draw	a	visually	appealing	image	on	a	canvas	all	using	the	knowledge	and	techniques	
acquired	throughout	this	course.	The	project	deliverables,	timelines,	constraints,	and	how	each	feat	was	
implemented	are	clearly	outlined	throughout	this	report.	In	understanding	how	all	the	elements	will	come	
together,	this	report	also	outlines	the	theoretical	mechanical	design,	electrical	design,	software	architecture,	
project	management,	and	the	final	cost	to	build	the	system.	

Introduction:	

	 The	project	required	a	robot	design	that	is	capable	of	maze	navigating,	line	following,	
and	artwork.	To	do	this	our	team	needed	to	design	and	build	an	autonomous	vehicle	that	is	
easy	to	implement	and	agile	enough	to	perform	these	tasks	and	more.	

Mechanical	Design:	

	 When	considering	the	mechanical	design	of	the	robot,	there	are	a	few	features	we	
decided	that	should	be	taken	into	consideration	and	which	in	the	end	were	implemented	on	
the	final	design.	The	original	design	of	the	robot	consisted	of	a	frame	that	was	purely	made	up	
of	2	levels	of	breadboards	as	seen	in	Figure	1	below.	

	
Figure	1:	3D	render	of	design	consideration	for	the	robot	,	showing	two	levels	of	breadboard	
design	where	the	motors	sit	on	the	bottom	breadboard,	the	microcontroller	and	H-Bridges	
placed	on	the	bottom	breadboard	and	the	distance	sensors	places	as	seen	in	the	figure	,	and	

the	Wheels	placed	in	the	center	of	the	robot	itself.		
	

	 	
	
	
	 	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	3	of	56	
		

	 The	original	design	was	that	the	robot	was	to	be	5”x	5”	leaving	plenty	of	room	for	the	
maze,	we	soon	found	that	it	was	quite	difficult	translating	that	size	to	the	physical	design	,	so	
we	constrained	the	design	to	7”x	5”	,	which	still	worked	and	was	the	perfect	size	fort	the	maze	
completion.	As	seen	in	figure	1	above,	the	design	that	was	thought	out	for	the	robot	was	not	
implementable	due	to	the	fact	that	the	placement	of	the	motors	was	going	to	be	a	challenge	to	
place	on	a	breadboard	securely	without	any	brackets	screwed	to	the	base.	For	this	fact	the	
whole	idea	for	a	breadboard	as	the	base	of	the	robot	was	trashed	and	we	opt	out	to	use	a	
plastic	base	expansion	plate	with	all	the	mounting	holes	necessary	to	allow	for	the	design	to	
have	many	possibilities.	See	Figure	2	Below.		

	
Figure	2:	Chassis	for	the	robot	Rover	5	Expansion	plate	6.8”	x	5”		

	
	 The	expansion	plate	allowed	for	proper	placement	of	the	motors	and	sensors.	The	
unlimited	amount	of	holes	allowed	for	an	easier	implementation	of	the	mechanical	design.		
Instead	of	the	breadboard	at	the	base,	4	breadboards	where	use	as	the	structure	of	the	robot	
rather	than	the	base.	Placing	2	breadboards	horizontally	and	2	more	breadboards	bridging	the	
microcontroller	on	top	,	allowed	for	an	easier	design	of	the	robot	for	all	the	different	
competitions.	See	Figure	3	below	for	a	visual	representation	of	how	the	final	design	of	the	
robot	looked	like	with	the	four	breadboards	as	the	structure	of	the	robot.		
	

	
Figure	3:	Structure	frame	for	the	design	of	the	robot	showing	4	breadboards	with	the	micro	

controller	bridge	at	the	top,	allowing	for	easy	connections	to	the	GPIO	pins.	The	two	
breadboards	on	the	bottom	sides,	allowed	for	an	easier	connection	to	the	H-bridges	and	

moto.	This	helped	organize	the	wire	clutter	and	allowed	for	an	easier	and	manageable	system	
that	was	easy	to	troubleshoot.	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	4	of	56	
		

	 The	motors	where	placed	on	the	Chassis	expansion	plate	using	mounting	brackets	and		
80	cm	in	diameter	wheels	where	attached	to	the	motors	themselves	using	connection	hubs	that	
attached	to	the	shaft	of	the	motor.	This	allowed	for	an	easy	mounting	of	the	wheels	to	the	
motors.	Figure	4	below	illustrate	where	the	motors	where	position	one	the	expansion	plate.		
	

	
Figure	4:	Placement	of	the	motors	on	the	expansion	plate	seen	if	figure	2	above	the	original	
design	called	for	the	motors	to	be	placed	towards	the	center	of	the	base	but	it	didn’t	allow	
enough	space	for	the	distance	sensor	and	third	wheel	,	so	it	was	decided	that	they	would	be	

placed	towards	the	back	as	seen	in	this	figure.		
	
The	specific	hub	,	motor	brackets,	and	wheels	used	for	this	system	can	be	seen	I	figure	5	below		

	

	
Figure	5:	Mounting	hub,	specific	wheels	used	with	the	system,	and	motor	brackets	used	to	
secure	the	motors	to	the	base.	These	where	essentially	all	mechanical	parts	of	this	system.	

Parts	that	consisted	of	the	general	structure	and	movement	of	the	system.	
	

To	balance	the	robot,	two	caster	wheels	seen	in	figure	6	where	attached	at	the	front	of	the	
robot	which	allowed	for	balance	and	stability	of	the	robot,	these	wheels	allowed	for	the	robot	
to	have	full	omnidirectional	freedom	necessary	for	the	robot	to	be	able	to	perform	in	all	the	
tasks.	

	
Figure	6:	Caster	wheels	used	to	stabilize	the	robot	,	in	the	original	design	consideration	,these	

caster	wheels	proved	to	be	effective	and	where	used	in	the	final	design.	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	5	of	56	
		

	 For	placement	of	sensors,	it	was	figured	that	putting	the	reflective	sensors	as	far	as	
possible	from	your	pivoting	wheels,	will	give	the	microcontroller	a	better	reaction	time	and	
reduce	the	chance	of	overshooting	during	the	line	following	as	well	as	the	artwork	trial.	Since	it	
allows	more	time	to	react.	The	distance	between	the	sensors	depended	on	the	track	itself,	and	
in	terms	where	places	1-3cm	apart	to	detect	whether	there	are	discontinuities	in	the	track.	As	
for	the	distance	sensors,	placing	one	at	a	45°	angle	at	one	edge	of	the	chassis	and	the	other	
facing	the	front	allowed	for	a	better	sense	of	the	maze.	General	placement	of	the	sensors	can	
be	seen	in	Figure	7	below.	
	

	
	

Figure	7:	Placement	of	distance	sensors	and	reflective	sensors.	The	original	design	called	for	
the	distance	sensors	to	be	placed	one	facing	completely	to	the	left	and	one	facing	completely	

to	the	right.	This	was	changed	and	one	was	placed	at	a	45°	degree	angle	on	one	of	the	
corners,	and	the	other	distance	sensor	facing	the	front.	The	reflective	sensors	were	placed	on	

the	bottom	of	the	robot	as	thought	in	the	original	designed,	worked	well	with	the	
implementation.	

	
	 In	order	to	have	come	up	with	the	best	placement	of	these	sensors.	The	only	way	we	
could	see	it	is	just	doing	multiple	trials	and	testing	to	gather	enough	data	for	their	placement.	
This	placement	was	found	the	best	for	the	sensors	to	optimize	the	operation	for	the	maze,	line	
and	artwork	competitions.		
	
The	Distance	sensors	were	mounted	on	the	chassis	Expansion	board	using	the	brackets	seen	in	
figure	8	below		

	
Figure	8:	Mounting	brackets	used	for	the	distance	sensors	

	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	6	of	56	
		

	 Although	not	used	in	the	line	following	and	the	Maze	completion,	the	writing	utensil	
was	also	a	mechanical	feat	we	had	to	overcome.	In	order	to	have	an	effective	writing	utensil	we	
engineered	a	way	to	have	a	writing	utensil	perfectly	centered	on	the	robot	to	be	effective	in	
drawing	accurate	designs	on	a	canvas.	Figure	A-C	shows	the	mechanical	system	used	for	the	
writing	utensil.		

	
Figure	A:	Shows	the	writing	utensil	mechanical	design	the	large	case	is	a	weight	used	to	keep	
the	pen	touching	the	ground.	The	spring	in	the	pen	is	used	to	keep	the	vibrations	away	from	

the	writing	as	the	robot	is	riding	across	the	canvas.	This	system	allows	for	an	easy	
replacement	of	the	pen	if	the	ink	was	to	run	out.		

	
Below	Figure	B	shows	how	the	writing	utensil	was	placed	at	the	completion.	Placement	of	the	
pen	was	crucial	it	needed	to	be	perfectly	centered	to	the	motors	as	it	was	originally	in	the	
design	that	was	thought	out	for	this	system.		
	

	
Figure	B:	How	the	pen	was	placed	on	the	system,	it	can	be	seen	is	perfectly	center	between	
the	motors	as	originally	thought	in	the	Design,	the	weight	incasing	fits	well	between	the	

breadboards	and	the	pen	sits	perfectly	on	the	ground.	
	

Figure	C	on	the	following	page	shows	a	closer	look	of	the	writing	utensil	and	how	it	sits	on	the	
ground.			

	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	7	of	56	
		

	
Figure	C:	Close	up	of	the	Ball	point	tip	of	the	pen	and	how	it	perfectly	sits	on	the	ground	with	

enough	pressure	to	write	with	precision.		
	

	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	8	of	56	
		

Electronic	Design:	
	 The	Electrical	Design	was	pretty	intuitive,	the	schematic	design	was	straight	forward	and	
it	went	hand	in	hand	from	what	was	original	planned.	The	electrical	design	was	a	build	off	from	
the	previous	labs.	See	figure	9	below	for	the	general	layout	of	the	electrical	system.	We	took	
the	time	to	draw	a	visual	schematic	that	was	easy	to	read	and	follow	and	which	laid	out	all	the	
components	used	to	in	the	system	to	be	controlled	by	the	microcontroller.		
	

	
Figure	9:	Physical	schematic	of	the	system	,	shows	where	each	of	the	components	was	
connected	in	relation	to	the	Microcontroller.	In	the	original	design	we	may	have	chosen	

different	GPOI	pins	to	connect	the	sensors	but	the	basic	idea	is	kept	the	same.		
Parts	that	will	be	used	for	electrical	design:		
#1207	 	 	 stepper	motor	2	pololu	
#352	 	 	 	breadboard	2	pololu	
#136		 	 	 distance	sensor	2	pololu	
455-1126-ND		 	 distance	sensor	connectors	2	digikey	
#2459			 	 reflectance	sensor	4	pololu	
#1704	 	 	 	jump	wires	15	pololu	
296-9911-5-ND		 motor	drive	chip	2	digikey	(H-Bridge)	
497-3450-5-ND		 5V	regulator	1	digikey	
(1)	Battery	9v	Duracell		
(1)	11.1v	,	1800mah	LIPO	Battery		

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	9	of	56	
		

	 In	general	we	utilize	at	least	8	pins	to	drive	both	stepper	motors	and	at	least	4	pins	for	
the	reflectance	sensors	and	2	pins	for	the	distance	sensors.	That	gave	us	a	total	of	14	pins	used.	
Carefully	choosing	the	pins	allowed	us	to	still	utilize	the	LCD	for	testing	for	the	pins	that	were	
chosen	for	the	distance	and	reflective	sensors	were	free	pins	that	were	not	used	by	the	LCD.	
This	was	a	smart	move	on	our	part	for	it	allowed	to	easily	trouble	shoot	on	the	spot	if	
something	went	wrong.		
	 Looking	Back	to	figure	9	above,	overall	schematic	of	the	system,	we	can	see	the	
	H-Bridges.	Below,	Figure	10,	we	see	a	more	in	detail	representation	on	how	the	connection	of	
the	H-Bridges	were	made.		

	
Figure	10:	H-Bridge	Connections	schematic,	this	was	important	to	get	right	for	it	was	the		

H-Bridge	which	was	the	most	important	part	on	being	able	to	drive	the	motor	forward.	The	
H-Bridges	used	for	the	system	were	specifically	SN754410NE.	

On	the	next	page	you	will	find	the	PCB	Design	for	this	Schematic,	detailing	the	different	connections	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	10	of	56	
	

Below	,Figure	11,	you	will	find	the	PCB	design	that	was	implemented	for	the	system,	which	
encompasses	the	H-Bridge	Schematics	found	in	figure	10.	

	
	 Figure	11:	PCB	Design	for	the	system,	nodes	are	labeled	and	can	be	seen	clearly.	
	
	 Although	a	PCB	Design	was	implemented,	our	budget	did	not	allow	for	a	physical	
implementation	and	utilization	in	the	system.	Nevertheless,	it	may	be	used	for	future	
implementations	for	is	a	working	design.	
	
	 The	final	Look	of	the	system	can	be	seen	in	the	images	below,	showing	all	the	sensors	
placed	,	the	motors	,	and	H-Bridges	including	all	the	wires	connected	to	the	sensors	from	the	
Microcontroller.	All	that	was	laid	out	in	the	figures	above	Figure	2-11	can	be	seen	in	the	final	
results	below,	Figure	12	and	Figure	13	on	the	following	pages.	
	
	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	11	of	56	
	

	
Figure	12:	Starting	From	top	Left	,	Is	the	H-Bridge	chip	on	the	side	on	top	of	the	Side	

breadboard	as	discussed	in	the	mechanical	design	,	the	image	on	the	right	and	bottom	show	
the	top	and	front	of	the	system,	with	the	both	distance	sensors	on	the	front	one	Placed	at	a	45°	

angle	on	the	chassis.		

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	12	of	56	
	

	
Figure	13:	Images	show	the	left	and	right	of	the	system	as	well	as	the	bottom	where	the	

reflectance	sensors	are	placed.	As	can	be	seen	on	the	bottom	of	the	robot	you	find	the	two	
caster	wheels	used	to	stabilize	the	robot.	On	the	top	and	left	and	right	images	you	may	have	a	

view	of	the	battery	9v	used	and	the	11.1v	battery	used	to	power	the	system.	
	
Although	it	can	be	hard	to	follow	the	electrical	wiring	for	the	system,	Figure	9,	Figure	10,	and	
Figure	11	have	a	good	way	of	showing	how	the	electrical	system	is	implemented	and	all	wires	in	
the	system	seen	in	figures	12	and	13	can	be	seen	serve	a	purpose.		
	
	
	
	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	13	of	56	
	

Software	Architecture:	

Maze	Algorithm:	

	 The	Maze	algorithm	implemented	followed	what	was	originally	designed	in	the	
consideration.		For	the	maze	algorithm	we	need	to	understand	how	a	maze	works	and	how	a	
human	could	potentially	be	able	to	navigate	the	maze	without	opening	one’s	eyes.	With	
understanding	in	thinking	how	this	may	be	accomplished.	We	came	up	with	an	algorithm	solved	
the	problem	at	hand	and	was	successful.	An	algorithm	which	mimics	a	right	hand	on	one	side	of	
the	maze	wall.	Refer	the	following	pages	for	an	explanation	of	how	the	robot	was	able	to	
navigate	through	the	maze	successfully.	In	the	original	design	consideration	for	the	algorithm	it	
was	considered	to	use	both	of	the	distance	sensors	for	the	algorithm.	But	it	was	later	figured	
that	using	only	one	at	a	45°	angle	was	sufficient	enough	and	made	for	the	program	to	be	far	
simpler.	The	Maze	that	was	needed	to	be	tackled	can	be	seen	in	Figure	14	below.	

		

	
Figure	14:	Maze	for	the	competition.		

	
	 As	the	robot	travel	through	the	maze	we	had	it	look	at	the	right	side	at	all	times	using	
the	sensor	that	was	placed	at	the	corner	of	the	chassis	at	a	45°	angle.		then	have	it	decide	if	it	
can	turn	left	then	turn	left,	if	it	not	able	to	turn	left	than	continue	in	a	straight	line	,	and	if	able	
to	turn	right		then	turn	right.	See	the	following	page	for	how	this	was	implemented	at	the	most	
difficult	part	of	maze,	the	dead	end,	seen	towards	the	bottom	right	of	the	image	in	Figure	14	
above	as	an	example.	

	

	

	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	14	of	56	
	

	

Figure	15:	Showing	robot	detecting	the	right	wall	with	the	Distance	sensor	at	a	distance	that	
is	between	10cm	and	20cm.	The	the	robot	keeps	just	keeps	moving	forward.	This	is	the	case	
for	all	the	Straight	aways	in	the	maze.	Image	on	the	left	simply	shows	what	where	is	the	

sensor	point	to.		

Code	running	at	this	point	can	be	seen	below:			if	the	side	sensor	is	greater	than	or	equal	to	
10cm	and	less	than	or	equal	to	20cm	then	keep	moving	forward.		

if(side_sensor >= 10 && side_sensor <= 20) // if is between 10 and 20cm away then
 keep moving forward
{
 for(i=0; i<4; i++)
 {
 StepMotor_half_right(&motor_right); // half step stepper motor right
 Delay (motor_delay);
 StepMotor_half_left(&motor_left); // half step stepper motor left
 Delay (motor_delay);
 }
}

This	code	runs	every	straight	away,	the	sensor	constantly	checks	if	this	condition	is	true	and	continues	to	
move	forward	straight.	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	15	of	56	
	

	

Figure	16:	Showing	robot	detecting	the	front	wall	with	the	Distance	sensor	at	a	distance	that	
is	less	than	10cm	.	The	the	robot	in	this	condition	turn	left.	This	is	the	case	for	all	the	times	

the	robot	sees	the	front	wall	of	the	maze.		

Code	running	at	this	point	can	be	seen	below:			if	the	side	sensor	is	less	than	10cm	turn	left.	

This	insures	that	the	robot	keeps	its	distance	from	the	right	wall	and	doesn’t	crash.	

else if (side_sensor < 10) // if it gets less than 10cm then shift a bit to theleft
{
 for(i=0; i<3; i++)
 {
 StepMotor_half_right(&motor_right); // half step stepper motor right
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left); // half stepper motor left reverse
 Delay (motor_delay);
 }
}

This	code	runs	every	time	the	sensor	sees	that	is	less	than	10cm	from	the	wall	and	just	keeps	turning	
left.	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	16	of	56	
	

	

Figure	17:	Showing	robot	detecting	the	front	wall	with	the	Distance	sensor	at	a	distance	that	
is	less	than	10cm	.	The	the	robot	in	this	condition	turn	left.	This	is	the	case	for	all	the	times	

the	robot	sees	the	front	wall	of	the	maze.		

Code	running	at	this	point	can	be	seen	below:			if	the	side	sensor	is	less	than	10cm	turn	left.	

This	insures	that	the	robot	keeps	its	distance	from	the	right	wall	and	doesn’t	crash.	

else if (side_sensor < 10) // if it gets less than 10cm then shift a bit to theleft
{
 for(i=0; i<3; i++)
 {
 StepMotor_half_right(&motor_right); // half step stepper motor right
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left); // half stepper motor left reverse
 Delay (motor_delay);
 }
}

This	code	runs	every	time	the	sensor	sees	that	is	less	than	10cm	from	the	wall	and	just	keeps	turning	
left.	

	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	17	of	56	
	

	

Figure	18:	Showing	robot	detecting	the	front	wall	with	the	Distance	sensor	at	a	distance	that	
is	less	than	10cm	.	The	the	robot	in	this	condition	turn	left.	This	is	the	case	for	all	the	times	

the	robot	sees	the	front	wall	of	the	maze.		

Code	running	at	this	point	can	be	seen	below:			if	the	side	sensor	is	less	than	10cm	turn	left.	

This	insures	that	the	robot	keeps	its	distance	from	the	right	wall	and	doesn’t	crash.	

else if (side_sensor < 10) // if it gets less than 10cm then shift a bit to theleft
{
 for(i=0; i<3; i++)
 {
 StepMotor_half_right(&motor_right); // half step stepper motor right
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left); // half stepper motor left reverse
 Delay (motor_delay);
 }
}

This	code	runs	every	time	the	sensor	sees	that	is	less	than	10cm	from	the	wall	and	just	keeps	turning	
left.	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	18	of	56	
	

	

Figure	19:	Showing	robot	detecting	the	right	wall	with	the	Distance	sensor	at	a	distance	that	
is	between	10cm	and	20cm.	The	the	robot	keeps	just	keeps	moving	forward.	This	is	the	case	

for	all	the	Straight	aways	in	the	maze.		

Code	running	at	this	point	can	be	seen	below:			if	the	side	sensor	is	greater	than	or	equal	to	
10cm	and	less	than	or	equal	to	20cm	then	keep	moving	forward.		

if(side_sensor >= 10 && side_sensor <= 20) // if is between 10 and 20cm away then
 keep moving foward
{
 for(i=0; i<4; i++)
 {
 StepMotor_half_right(&motor_right); // half step stepper motor right
 Delay (motor_delay);
 StepMotor_half_left(&motor_left); // half step stepper motor left
 Delay (motor_delay);
 }
}

This	code	runs	every	straight	away,	the	sensor	constantly	checks	if	this	condition	is	true	and	continues	to	
move	forward	straight.	
	
So	the	above	figures	demonstrates	how	the	robot	was	able	to	manage	the	dead	end	and	continually	
make	a	left	turn	,	but	in	the	scenario	where	the	robot	had	to	a	right	turn	the	algorithm	was	slightly	more	
involved.	As	can	be	seen	on	the	following	page.	
	
	 	 	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	19	of	56	
	

	 	 Image	1		 						image	2		 	 image	3		 								image	4		

	

Figure	20:	Making	a	Right	turn	Break	down,	image	top	left	to	bottom	right.		

Starting	from	the	image	1	in	figure	20,	the	robot	runs	the	code	that	was	seen	in	figure	15	or	19.	
But	as	the	robot	peaks	over	the	corner,	image	2,	with	the	distance	sensor	the	following	code	
takes	over	and	the	robot	begins	to	react	to	the	right	turn	imediately.	

else if (side_sensor >= 30) // if it become greater than 30cm then perform the turn
 right sequence 	
{
 for(i=0; i< 400; i++)
 {
 StepMotor_half_right(&motor_right); // half step stepper motor right
 Delay (motor_delay);
 StepMotor_half_left(&motor_left); // half step stepper motor left
 Delay (motor_delay);
 }
 for(i=0; i<150; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // half right reverse
 Delay (motor_delay);
 StepMotor_half_left(&motor_left); // half step stepper motor left
 Delay (motor_delay);
 }
}

As	soon	as	it	detects	that	the	distance	sensor	reads	more	than	30cm	the	code	runs	the	motors	
for	about	2	full	steps	and	then	turns	the	robot	right.	This	is	to	ensure	that	the	robot	is	
overshooting	the	corner	and	does	not	end	up	hitting	it.		

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	20	of	56	
	

As	the	robot	finish	it	sequence	of	turning	it	checks	the	codition	once	more	and	it	becomes	true	
therefore	in	image	3,4	,figure	20,	it	runs	through	the	sequence	again	because	the	sensor	will	
read	greater	than	30cm.	Once		it	finishes	with	the	sequence	the	robot	will	then	run	to	this	
condition	Image	5,	figure	20.	Where	the	distance	sensor	reads	greater	than	20cm	and	less	than	
30cm.	In	this	case	the	robot	will	simply	turn	right	to	find	the	right	wall	again	using	the	following	
code	sequence.	

else if (side_sensor > 20 && side_sensor < 30) // if is greater
than 20 cm and less than 30cm adjust yourself to move right
 {
 for(i=0; i<30; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // half step stepper
 motor right reverse
 Delay (motor_delay);
 StepMotor_half_left(&motor_left); // half step stepper motorleft
 Delay (motor_delay);
 }
}
Once	the	robot	find	the	right	wall	again	,	it	will	be	the	same	as	the	figures	15-19.	For	moving	
forward	and	making	a	left	turn	image	6	,	figure	20.	

	

(See	full	code	implementaion	for	the	Maze	algorith	fully	comminted	in	the	Attached	Project	
files	and	in	Appendix)	

	

	

	

	

	

	

	

	

	

	

	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	21	of	56	
	

Line	Following:		

	 Using	what	was	learned	from	lab	and	we	implement	the	reflectance	sensors	to	help	in	
the	aid	of	the	line	follower.	The	original	design	consideration	worked	well	for	the	final	design	
implementation	and	the	idea	worked	to	allow	the	robot	to	follow	a	black	line	successfully.	With	
line	following	we	have	to	different	cases	each	of	the	reflective	sensors	see	either	black	or	white	
,	in	simpler	terms	this	may	just	be	represented	as	true	or	false	,	‘1’	or	a	‘0’	respectively.		The	
track	that	was	needed	to	be	tackled	can	be	seen	below	figure	21.		

	

Figure	21:	Line	Following	Track	Used	in	the	competition	and	which	the	robot	completed	
successfully.		

	 For	line	following	we	decided	to	go	with	4	sensors	to	read	the	line	on	the	floor.	These	
four	sensors	can	be	denoted	as	four	binary	digits	1111:	sensor	1,	sensor	2,	sensor	3	and	sensor	
4	respectively.	There	are	just	a	few	rules	that	the	robot	had	to	take	in	order	to	be	a	successful	in	
following	the	line.	As	the	robot	is	following	the	line,	it	will	continue	as	long	as	any	of	the	sensors	
detect	a	line,	that	is	16	different	possible	ways	it	can	see	the	line.	If	the	robot	for	any	reason	
leaves	view	of	the	line	that	is	0000,	then	it	baked	up	slightly,	this	was	slightly	different	in	the	
design	consideration	for	in	the	design	consideration	the	robot	was	suppose	to	continuously	
turn	until	it	saw	the	line	and	it	will	search	within	that	area	to	see	if	it	can	get	back	on	track	with	
gathering	1	or	more	sensors	seeing	the	line.		

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	22	of	56	
	

	

Figure	22:	Scenario	for	line	following	robot,	all	three	images	represent	the	same	scenario	at	
different	angle,	Sensors	are	labeled	in	correspondence	to	the	code.	And	the	function	used	for	

the	sensors	that	can	be	seen	in	the	Appendix	header	file	for	the	Reflectance	sensors.	

With	the	line	follower	the	robot,	the	robot	makes	a	decision	every	step	it	takes	to	insure	it	stays	
on	the	line.	The	algorithm	was	simple	initiate	the	sensors,	return	the	result,	make	a	decision,	
and	move	the	motors.	The	following	pages	will	outline	how	this	was	achieved.	

	

	

	

	

	

	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	23	of	56	
	

	 	 Image	1		 	 	 	 	 image	2		

	

Image	3 	

Figure	23:	Robot	moving	through	the	line	and	making	decisions	every	step	of	the	way	
Image	1	shows	the	robot	moving	forward	stopping,	analyzing	the	situation,	and	in	figure	2	it	

corrects	itself	and	continues	to	follow	the	line	in	image	3.	
	

	 In	order	to	achieve	what	can	be	seen	in	Figure	23,	it	can	be	broken	down	into	3	logical	
steps.	As	the	sensor	read	the	conditions	set	in	front	of	them	the	value	is	stored	in	a	byte	with	
each	bit	representing	the	status	of	one	particular	sensor.	If	a	bit	is	1,	then	the	corresponding	
sensor	is	over	the	line	and	if	the	bit	is	0,	then	it	is	not	on	the	line.	The	following	examples	will	
make	it	clear.	
	 In	image	one	in	figure	23,	If	the	value	of	the	sensors	is	‘0110’,	or	sensor	1=0	,	sensor	2=1	
,	sensor	3=1,	and	sensor	4=0	respectively	then	the	robot	sees	the	line	and	move	forward.	In	the	
original	design	consideration	the	value	of	that	was	returned	was	a	decimal	number	and	the	
values	would	have	been	added	up	to	the	corresponding	decimal	number	condition.	What	was	
decided	to	do	was	have	the	sensor	represent	a	hexadecimal	value	0x0000	or	0x0101	for	
example.	See	the	code	on	the	following	page	on	how	this	is	calculated	in	the	program.		
	
	
	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	24	of	56	
	

Code	for	determining	what	to	do	based	on	the	sensors.	This	code	is	placed	inside	a	while	
statement	and	continuously	runs.	The	following	code	only	shows	a	snip	of	the	cases	,	there	are	
16	cases	total,	this	code	shows	two	but	the	other	14	cases	are	the	basic	same	idea.	After	it	does	
one	case	the	program	loops	again	and	it	performs	the	corresponding	case	based	on	the	
condition	from	the	final_move	below.	In	the	image	1	as	the	robot	moved	forward	the	
hexadecimal	representation	that	may	be	seen	from	the	sensors	can	be	0x0001.	This	runs	the	
corresponding	case	0x0001,	which	triggers	a	sequence	for	the	motor	to	move	slightly	to	the	
right	and	them	move	forward	slightly.	
	
final_move =0; // final move variable clearing to move to the next
 move
 move[0] = sensor_1000(); // sensor 1
 move[1] = sensor_0100(); //sensor 2
 move[2] = sensor_0010(); // sensor 3
 move[3] = sensor_0001(); // sensor 4
 // this is the driver of the system , the robot reacts based on the
// hexadecimal number that comes in for final_move
final_move = move[0]| move[1]| move[2] | move[3]; // check which condition is met
 based on the hexadecimal combination

 switch(final_move) // This Checks the final move to see what
 the motors need to do
 { // based on the combination for final move
 Hexadecimal number it does the case corresponding
 case 0x0000: // the motor turns the amount of loops in
 each for loop so some cases might go
 longer than others
 for(i=0; i<30; i++) // depending on the condition of the robot.
 {
 StepMotor_half_left_reverse(&motor_left);
 Delay(motor_delay);
 StepMotor_half_right_reverse(&motor_right);
 Delay(motor_delay);
 }
 check = 1;
 break;

 case 0x0001 : // in this case the robot responds accordingly to 0x0001
 for(i=0; i<30; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right_reverse(&motor_right);
 Delay (motor_delay);
 }
 for(i=0; i<50; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 }

		
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	25	of	56	
	

In	image	1	,	figure	23,	the	sensor	reads	0x0001	,	during	this	case	the	robot	will	see	the	line	in	its	
far	right	and	it	terms	will	correct	itself	and	turn	right.	This	can	be	true	for	the	case	in	which	sees	
the	sensors	‘1100’	or	‘0011’	or	even	‘1000’	and	‘0001’.	If	the	most	extreme	cases	‘1000’	are	
done	or	‘0001’	is	implemented	that	means	that	is	a	need	for	a	turn	and	the	robot	will	turn	
accordingly.	That	means	the	speed	and	direction	of	both	motors	are	adjusted.		

	
Figure	24:	Top	to	bottom	view	of	what	the	sensors	see	this	may	be	represented	as		

‘0110’,	in	which	case	the	robot	stays	moving	forward	In	image	3	of	figure	23.		
	

A	closer	look	of	one	of	the	functions	for	the	reflectance	sensors	can	be	seen	below	and	how	it	
returns	the	correct	hexadecimal	value	based	on	the	reading	of	the	each	particular	sensor	
themselves.	The	code	below	is	for	the	sensor	0x1000	on	the	robot,	it	is	controlled	by	pin	PA11.	
First	the	pin	is	on	,	then	it	turns	off	,	the	reflectance	sensor	reads	the	value,	a	counter	is	set,	and	
based	on	the	value	of	the	counter	the	value	is	returned	to	the	main	function	as	0x1000	or	
0x0000,	respectively.	
 uint32_t sensor_1000()
 {
 int8_t count;
 //First reflective sensor (PA11)
 GPIOA->MODER &= ~(0x03 << (2*11));
 GPIOA->MODER |= (0x01 << (2*11));
 GPIOA->ODR = 0x1 << 11; // turn on the pin then delay it
 Delay(50);

 count = 0;
 GPIOA->MODER &= ~(0x03 << (2*11));

 while (GPIOA->IDR & 0x800)
 count++;
 Delay(50);
 if (count > 10){
 return 0x1000; // value returned to use in final move
 }
 else{
 return 0x0000; // value returned to use in final move
 }
 }

	
	
	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	26	of	56	
	

Artwork:	
	For	the	Artwork	objective,	taken	what	we	learned	from	the	previous	objectives	ie,	maze	and	
line	following,	respectively,	it	was	understood	that	for	the	artwork	part	of	the	project,	it	all	
comes	down	to	fine	tune	motor	control.	This	was	exactly	what	was	considered	in	the	original	
design.	Although	in	the	original	design,	it	was	thought	that	a	small	motor	could	be	incorporated	
to	control	the	pen,	we	sought	this	to	be	completely	unnecessary,	and	placing	the	pen	dead	
center	of	the	two	stepper	motors	sufficed.	
	 For	qualification	the	task	was	to	draw	a	simple	square	that	was	bigger	than	9”	by	9”,	and	
smaller	than	15”	by	15”.	Ideally	a	square	that	is	approximately	12”.	For	the	competition	the	task	
was	to	draw	a	visually	appealing	image,	it	was	decided	that	a	balloon	was	the	best	choice	
because	everyone	like	balloons.	Figure	25	below	shows	the	breakdown	of	the	basic	
components	used	to	achieve	the	drawing	feat.	

	
Figure	25:	Shows	the	actual	robot	drawing	a	circle	on	the	right	and	the	3D	render	of	the	robot	

outlining	the	different	components	used	to	make	the	drawing	happen.	
	

In	order	to	achieve	a	circle	the	task	was	very	easy	and	the	implementation	took	no	time	at	all.		
Using	what	was	learned	to	control	the	robot	in	the	line	and	maze	competition	the	task	of	
drawing	the	desired	image	we	wanted	was	quite	feasible.	Below	shows	the	code	for	the	robot	
drawing	a	circle.		This	was	implemented	inside	a	while	statement.		
for(i=0; i<2190; i++)
{
 StepMotor_half_right(&motor_right); // BIG PERFECT CIRCLE
 Delay (motor_delay_draw);
}
Although	the	implementation	for	the	drawing	was	simple,	the	build	up	to	achieve	such	
simplicity	was	not	easy,	motor	function	timing	,	and	coordination	with	the	motors	and	
mechanical	placement	of	the	utensil	made	it	challenging.	But	as	far	as	the	software	
implementation	in	main.	It	was	fairly	straight	forward.	The	rest	follows	the	same	logic.	Different	
for	loop	timing	and	motor	direction.	
(See	appendix	for	al	source	code	for	all	the	different	competitions,	including	header	files	used	

to	implement	each	of	programs	used.	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	27	of	56	
	

Project	Management:	
	 The	project	was	managed	really	well,	the	design	consideration	and	the	actual	
implantation	when	hand	in	hand.	No	problems	at	all	and	the	competitions	were	a	success	.	the	
following	gant	chart	shows	the	schedule	that	was	followed.	

	
Figure	26:	Task	and	the	Amount	of	time	it	took	

	

	
Figure	27:	Gant	Chart	showing	Work	distribution	

	
All	members	of	the	group	contributed	equally	and	the	project	was	managed	successfully	with	

very	little	upsetting	moments.	It	was	hard	work	all	the	way.	
	
	
	
	
	
	
	
	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	28	of	56	
	

Cost	Analysis:		The	cost	was	almost	where	we	wanted	to	be	,	we	did	go	a	little	above	budget	
but	that’s	okay	for	it	was	a	succesfull	build.	

Table	1:	Total	cost	1	

	

Table	2:	Cost	for	Additional	Parts	gathered.	

	

Table	3:	Cost	for	additional	parts	gathered.	

	 Table	1	,	Table	2,	and	Table	3	in	the	previous	page	displays	the	cost	for	the	Final	Project.	
The	stepper	motor	mount	was	needed	to	mount	the	stepper	motor.	This	was	the	best	approach	
rather	than	gluing	the	stepper	motor	into	the	board	which	is	inconsistent	and	may	lead	to	
complications	to	the	alignment	that	will	hinder	the	speed/precision	of	the	race	for	the	
competition.		Total	cost	for	the	build	came	to	be	around	close	to	$240	.	This	is	due	to	additional	
accessories	bought	such	as	batteries,	LIPO	charger,	LEDS,	Wires,	Glue,	Scissors,	Electrical	tape,	
regular	tape,	resistors,	breadboards,	and	Microcontrollers	because	we	burnt	a	few.		

	 	

	

	

	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	29	of	56	
	

Conclusion:	

	 Our	team	decided	to	tackle	this	project	with	the	right	attitude	in	order	to	obtain	a	
successful	build	for	this	final	project.	All	possible	approaches	were	considered	and	we	arrived	to	
a	final	design	which	allowed	for	success	in	the	completion.	This	mostly	consists	of	determining	
what	constraints	would	be	involved	when	designing	this	embedded	system	in	a	manner	that	
would	satisfy	the	final	project	requirements.		

	 Some	comments	about	the	project	may	be	that	it	was	way	to	expensive	to	build	and	for	
broke	college	students	like	us,	this	was	just	detrimental	on	our	wallets.	Another	problem	that	
we	encountered	was	the	fact	that	we	had	limited	parts	to	use.	We	should	be	provided	with	
spare	parts	just	in	case	some	of	them	broke.	Over	all	it	was	hard	work	all	the	way	and	we	had	
fun	building	and	programing	our	robot.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	30	of	56	
	

APPENDIX	A	:	Source	Code	used.	
Header	Files	Used	throughout	all	the	programs:	.h	files	

System	Clock	.h	file:		
//**
// includes system clock
//**

#include "stm32l1xx.h"
#include "math.h"

volatile uint32_t msTicks; ///counts 1ms timeTicks
uint32_t SystemCoreClock = 2097000;
uint32_t val=0;

/*---
 SysTick_Handler
 //--*/
void SysTick_Handler(void) {
 msTicks++;
}

/*---
 // delays number of tick Systicks (happens every 1 ms)
 //--*/
void Delay (uint32_t dlyTicks) {
 uint32_t curTicks;

 curTicks = msTicks;
 while ((msTicks - curTicks) < dlyTicks);
}

	

Motors	Implementation	.h	files:		
// *****************************HEADER FILE FOR MOTOR
// contains constants and Functions for Full step and half step for both motors
// HALF and Full step Right motor
// HALF and Full step LEFT motor
//***
//--
// Define Constants
#include "stm32l1xx.h"
#include "math.h"
//#include "system_clock.h"

#define F 1
#define R 2
#define O 0

//--

typedef struct _Motor
{
 unsigned long totalSteps;
 unsigned short step;
} Motor;

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	31	of	56	
	

//--
// Prototypes
void coil_m1 (uint8_t dir, uint8_t p1, uint8_t p2);
void StepMotor_half_left(Motor *); //HALF Step with LEFT motor PB15,14,13,12
void StepMotor_full_left(Motor *); //FULL Step with LEFT motor PB15,14,13,12
void StepMotor_full_left_reverse (Motor *);

void StepMotor_half_right(Motor *); //HALF Step with RIGHT motor PC6,7,8,9
void StepMotor_full_right(Motor *); //FULL Step with RIGHT motor PC6,7,8,9
void StepMotor_full_right_reverse (Motor *);
/*--
 initialize LED Pins
 --/
void Motor_Init (void) {

 //this initializes the buttons and gpio pins outputs to pb4 to pb11 , buttons inputs pb12
and pb13
// RCC->AHBENR |= (1UL << 1); /* Enable GPIOA,GPIOB,GPIOC, clock */
 RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_GPIOCEN;

 GPIOB->MODER &= ~(0xFF000000); // PB15-12 for Stepper Motor LEFT //GOOD
 GPIOB->MODER |= (0x55000000); // PB15-12 for Stepper Motor LEFT //GOOD

 GPIOB->OTYPER &= ~(0xFF000000); //clear
 GPIOB->OSPEEDR &= ~(0xFF000000); //clear

 GPIOC->MODER &= ~(0x000FF000); // PC 6-9 for Stepper Motor RIGHT // GOOD
 GPIOC->MODER |= (0x00055000); // PC6-9 for Stepper Motor RIGHT // GOOD

 GPIOC->OTYPER &= ~(0x000FF000); //clear
 GPIOC->OSPEEDR &= ~(0x000FF000); //clear
}
/*--
 Function that outputs high for requested pin
 --/
void Pin_High (uint8_t num)
{
 if(num == 15 || num == 14 || num == 13 || num == 12)
 GPIOB->BSRRL = (1<<num);
 else
 GPIOC->BSRRL = (1<<num);
}
/*--
 Function that outputs low for requested pin
 --/
void Pin_Low (uint8_t num)
{
 if(num == 15 || num == 14 || num == 13 || num == 12)
 GPIOB->BSRRH = (1<<num);
 else
 GPIOC->BSRRH = (1<<num);
}

// Motor States GENERIC WorksWith all PINS
void coil_m1 (uint8_t dir,uint8_t p1, uint8_t p2){

 if(dir == F) {
 Pin_High(p1);
 Pin_Low(p2);
 };
 if(dir == R){
 Pin_Low(p1);
 Pin_High(p2);
 }
 if(dir == O) {
 Pin_Low(p1);
 Pin_Low(p2);
 }
 return;

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	32	of	56	
	

}

//-------------------MOTOR CASES FULL/HALF STEPS --------------------------

// half step eight cases only wokrs with pins
void StepMotor_half_left (Motor *motor1){ //PB 15,14,13,12 WORKING HALF LEFT

 //4 // 5 // 6 //7

 switch (motor1->step){//15 //14 //13 //12
 case 0:
 coil_m1(F,15,14);
 coil_m1(O,13,12);
 break;
 case 1:
 coil_m1(F,15,14);
 coil_m1(F,13,12);
 break;
 case 2:
 coil_m1(O,15,14);
 coil_m1(F,13,12);
 break;
 case 3:
 coil_m1(R,15,14);
 coil_m1(F,13,12);
 break;
 case 4:
 coil_m1(R,15,14);
 coil_m1(O,13,12);
 break;
 case 5:
 coil_m1(R,15,14);
 coil_m1(R,13,12);
 break;
 case 6:
 coil_m1(O,15,14);
 coil_m1(R,13,13);
 break;
 case 7:
 coil_m1(F,15,14);
 coil_m1(R,13,12);
 break;
 }

 motor1->totalSteps++;
 motor1->step++;
 if (motor1->step == 8){
 motor1->step = 0;
 }
 return;

}
void StepMotor_half_left_reverse (Motor *motor1){ //PB 15,14,13,12 WORKING HALF LEFT

 //4 // 5 // 6 //7

 switch (motor1->step){//15 //14 //13 //12
 case 7:
 coil_m1(F,15,14);
 coil_m1(O,13,12);
 break;
 case 6:
 coil_m1(F,15,14);
 coil_m1(F,13,12);
 break;
 case 5:
 coil_m1(O,15,14);

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	33	of	56	
	

 coil_m1(F,13,12);
 break;
 case 4:
 coil_m1(R,15,14);
 coil_m1(F,13,12);
 break;
 case 3:
 coil_m1(R,15,14);
 coil_m1(O,13,12);
 break;
 case 2:
 coil_m1(R,15,14);
 coil_m1(R,13,12);
 break;
 case 1:
 coil_m1(O,15,14);
 coil_m1(R,13,13);
 break;
 case 0:
 coil_m1(F,15,14);
 coil_m1(R,13,12);
 break;
 }

 motor1->totalSteps++;
 motor1->step++;
 if (motor1->step == 8){
 motor1->step = 0;
 }
 return;

}

void StepMotor_full_left (Motor *motor1){ //PB 15,14,13,12 WORKING FULL LEFT

 switch (motor1->step)
 {
 case 0:
 coil_m1(F,15,14);
 coil_m1(O,13,12);
 break;
 case 1:
 coil_m1(O,15,14);
 coil_m1(F,13,12);
 break;
 case 2:
 coil_m1(R,15,14);
 coil_m1(O,13,12);
 break;
 case 3:
 coil_m1(O,15,14);
 coil_m1(R,13,12);
 break;
 }

 motor1->totalSteps++;
 motor1->step++;
 if (motor1->step == 4){
 motor1->step = 0;
 }
 return;
}

void StepMotor_full_left_reverse (Motor *motor1){ //PB 15,14,13,12 WORKING FULL LEFT

 switch (motor1->step)
 {
 case 3:
 coil_m1(F,15,14);

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	34	of	56	
	

 coil_m1(O,13,12);
 break;
 case 2:
 coil_m1(O,15,14);
 coil_m1(F,13,12);
 break;
 case 1:
 coil_m1(R,15,14);
 coil_m1(O,13,12);
 break;
 case 0:
 coil_m1(O,15,14);
 coil_m1(R,13,12);
 break;
 }

 motor1->totalSteps++;
 motor1->step++;
 if (motor1->step == 4){
 motor1->step = 0;
 }
 return;
}

void StepMotor_half_right (Motor *motor1){ // PC 6,7,8,9 WORKING HALF RIGHT
 //4 // 5 // 6 //
 //6 // 7 // 8 // 9
 switch (motor1->step){//15 //14 //13 //12

 case 7:
 coil_m1(F,6,7);
 coil_m1(O,8,9);
 break;
 case 6:
 coil_m1(F,6,7);
 coil_m1(F,8,9);
 break;
 case 5:
 coil_m1(O,6,7);
 coil_m1(F,8,9);
 break;
 case 4:
 coil_m1(R,6,7);
 coil_m1(F,8,9);
 break;
 case 3:
 coil_m1(R,6,7);
 coil_m1(O,8,9);
 break;
 case 2:
 coil_m1(R,6,7);
 coil_m1(R,8,9);
 break;
 case 1:
 coil_m1(O,6,7);
 coil_m1(R,8,9);
 break;
 case 0:
 coil_m1(F,6,7);
 coil_m1(R,8,9);
 break;
 }

 motor1->totalSteps++;
 motor1->step++;
 if (motor1->step == 8){
 motor1->step = 0;
 }
 return;

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	35	of	56	
	

void StepMotor_half_right_reverse (Motor *motor1){ // PC 6,7,8,9 WORKING HALF RIGHT
 //4 // 5 // 6 //7
 //6 // 7 // 8 // 9
 switch (motor1->step){//15 //14 //13 //12

 case 0:
 coil_m1(F,6,7);
 coil_m1(O,8,9);
 break;
 case 1:
 coil_m1(F,6,7);
 coil_m1(F,8,9);
 break;
 case 2:
 coil_m1(O,6,7);
 coil_m1(F,8,9);
 break;
 case 3:
 coil_m1(R,6,7);
 coil_m1(F,8,9);
 break;
 case 4:
 coil_m1(R,6,7);
 coil_m1(O,8,9);
 break;
 case 5:
 coil_m1(R,6,7);
 coil_m1(R,8,9);
 break;
 case 6:
 coil_m1(O,6,7);
 coil_m1(R,8,9);
 break;
 case 7:
 coil_m1(F,6,7);
 coil_m1(R,8,9);
 break;
 }

 motor1->totalSteps++;
 motor1->step++;
 if (motor1->step == 8){
 motor1->step = 0;
 }
 return;

}

void StepMotor_full_right (Motor *motor1){ // PC 6,7,8,9 WORKING FULL RIGHT
 switch (motor1->step)
 {
 case 3:
 coil_m1(F,6,7);
 coil_m1(O,8,9);
 break;
 case 2:
 coil_m1(O,6,7);
 coil_m1(F,8,9);
 break;
 case 1:
 coil_m1(R,6,7);
 coil_m1(O,8,9);
 break;
 case 0:
 coil_m1(O,6,7);
 coil_m1(R,8,9);
 break;
 }

 motor1->totalSteps++;
 motor1->step++;

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	36	of	56	
	

 if (motor1->step == 4){
 motor1->step = 0;
 }
 return;
}

void StepMotor_full_right_reverse (Motor *motor1){ // PC 6,7,8,9 WORKING FULL RIGHT

 switch (motor1->step)
 {
 case 0:
 coil_m1(F,6,7);
 coil_m1(O,8,9);
 break;
 case 1:
 coil_m1(O,6,7);
 coil_m1(F,8,9);
 break;
 case 2:
 coil_m1(R,6,7);
 coil_m1(O,8,9);
 break;
 case 3:
 coil_m1(O,6,7);
 coil_m1(R,8,9);
 break;
 }

 motor1->totalSteps++;
 motor1->step++;
 if (motor1->step == 4){
 motor1->step = 0;
 }
 return;
}

	

LCD	Header	File	.h	File:	
#define bool _Bool

void LCD_Clock_Init(void);
void LCD_PIN_Init(void);
void LCD_Configure(void);
void reflective_sensors(void);

//void LCD_Display_String2(void); //white

/* ===
 LCD MAPPING
 ===
 A
 _ ----------
COL |_| |\ |J /|
 F| H | K |B
 _ | \ | / |
COL |_| --G-- --M--
 | /| \ |
 E| Q | N |C
 _ | / |P \|
DP |_| -----------
 D
*/

/* Constant table for cap characters 'A' --> 'Z' */
const uint16_t CapLetterMap[26] = {
 /* A B C D E F G H I */
 0xFE00,0x6714,0x1d00,0x4714,0x9d00,0x9c00,0x3f00,0xfa00,0x0014,
 /* J K L M N O P Q R */

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	37	of	56	
	

 0x5300,0x9841,0x1900,0x5a48,0x5a09,0x5f00,0xFC00,0x5F01,0xFC01,
 /* S T U V W X Y Z */
 0xAF00,0x0414,0x5b00,0x18c0,0x5a81,0x00c9,0x0058,0x05c0
};

/* Constant table for number '0' --> '9' */

const uint16_t NumberMap[10] = {
 /* 0 1 2 3 4 5 6 7 8 9 */
 0x5F00,0x4200,0xF500,0x6700,0xEa00,0xAF00,0xBF00,0x04600,0xFF00,0xEF00
};

volatile uint32_t msTicks; /* counts 1ms timeTicks */
uint32_t SystemCoreClock = 2097000;

/*--
 SysTick_Handler
 --/
void SysTick_Handler(void) {
 msTicks++;
}

/*--
 delays number of tick Systicks (happens every 1 ms)
--/
void Delay (uint32_t dlyTicks) {
 uint32_t curTicks;

 curTicks = msTicks;
 while ((msTicks - curTicks) < dlyTicks);
}

// Converts an ascii char to the a LCD digit
static void LCD_Conv_Char_Seg(uint8_t* c, bool point, bool column, uint8_t* digit) {
 uint16_t ch = 0 ;
 uint8_t i,j;

 switch (*c) {
 case ' ' :
 ch = 0x00;
 break;

 case '0':
 case '1':
 case '2':
 case '3':
 case '4':
 case '5':
 case '6':
 case '7':
 case '8':
 case '9':
 ch = NumberMap[*c-0x30];
 break;

 default:
 /* The character c is one letter in upper case*/
 if ((*c < 0x5b) && (*c > 0x40)) {
 ch = CapLetterMap[*c - 'A'];
 }
 /* The character c is one letter in lower case*/
 if ((*c <0x7b) && (*c> 0x60)) {
 ch = CapLetterMap[*c - 'a'];
 }
 break;
 }

 /* Set the digital point can be displayed if the point is on */

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	38	of	56	
	

 if (point) {
 ch |= 0x0002;
 }

 /* Set the "COL" segment in the character that can be displayed if the column is on */
 if (column) {
 ch |= 0x0020;
 }

 for (i = 12,j=0; j<4; i-=4,j++) {
 digit[j] = (ch >> i) & 0x0f; //To isolate the less signifiant dibit
 }
}

// This function is to display a given ASCII character on a specified position
// Input:
// ch: the ASCII value of the character to be display
// colon: The colon boolean flag indicates whether the colon is display.
// position: The LCD can display six decimal digits, thus the position is between 1 and 6.
void LCD_WriteChar(uint8_t* ch, bool point, bool colon, uint8_t position,uint8_t cm) {
 uint8_t digit[4]; /* Digit frame buffer */

 // Convert displayed character in segment in array digit
 LCD_Conv_Char_Seg(ch, point, colon, digit);

 while ((LCD->SR & LCD_SR_UDR) != 0); // Wait for Update Display Request Bit

 LCD->RAM[4] &= 0x2000; // clear bar 3
 LCD->RAM[6] &= 0x2000; // clear bar 2
 LCD->RAM[4] &= 0x8000; // clear bar 1
 LCD->RAM[6] &= 0x8000; // bar 0
 if (cm < 30)
 {
 LCD->RAM[6] |= 0x8000; // bar 0
 }
 if (cm <21)
 {
 LCD->RAM[4] |= 0x8000; // bar 1
 }
 if (cm < 13)
 {
 LCD->RAM[6] |= 0x2000; // bar 2
 }
 if (cm < 5)
 {
 LCD->RAM[4] |= 0x2000; // bar 3
 }

 switch (position) {
 /* Position 1 on LCD (Digit 1)*/
 case 1:
 LCD->RAM[0] &= 0xcffffffc;
 LCD->RAM[2] &= 0xcffffffc;
 LCD->RAM[4] &= 0xcffffffc;
 LCD->RAM[6] &= 0xcffffffc;

 LCD->RAM[0] |= ((digit[0]& 0x0c) << 26) | (digit[0]& 0x03) ; // 1G 1B 1M 1E
 LCD->RAM[2] |= ((digit[1]& 0x0c) << 26) | (digit[1]& 0x03) ; // 1F 1A 1C 1D
 LCD->RAM[4] |= ((digit[2]& 0x0c) << 26) | (digit[2]& 0x03) ; // 1Q 1K 1Col 1P
 LCD->RAM[6] |= ((digit[3]& 0x0c) << 26) | (digit[3]& 0x03) ; // 1H 1J 1DP 1N

 break;

 /* Position 2 on LCD (Digit 2)*/
 case 2:
 LCD->RAM[0] &= 0xf3ffff03;
 LCD->RAM[2] &= 0xf3ffff03;
 LCD->RAM[4] &= 0xf3ffff03;
 LCD->RAM[6] &= 0xf3ffff03;

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	39	of	56	
	

 LCD->RAM[0] |= ((digit[0]& 0x0c) << 24)|((digit[0]& 0x02) << 6)|((digit[0]& 0x01) << 2)
; // 2G 2B 2M 2E
 LCD->RAM[2] |= ((digit[1]& 0x0c) << 24)|((digit[1]& 0x02) << 6)|((digit[1]& 0x01) << 2)
; // 2F 2A 2C 2D
 LCD->RAM[4] |= ((digit[2]& 0x0c) << 24)|((digit[2]& 0x02) << 6)|((digit[2]& 0x01) << 2)
; // 2Q 2K 2Col 2P
 LCD->RAM[6] |= ((digit[3]& 0x0c) << 24)|((digit[3]& 0x02) << 6)|((digit[3]& 0x01) << 2)
; // 2H 2J 2DP 2N

 break;

 /* Position 3 on LCD (Digit 3)*/
 case 3:
 LCD->RAM[0] &= 0xfcfffcff;
 LCD->RAM[2] &= 0xfcfffcff;
 LCD->RAM[4] &= 0xfcfffcff;
 LCD->RAM[6] &= 0xfcfffcff;

 LCD->RAM[0] |= ((digit[0]& 0x0c) << 22) | ((digit[0]& 0x03) << 8) ; // 3G 3B 3M 3E
 LCD->RAM[2] |= ((digit[1]& 0x0c) << 22) | ((digit[1]& 0x03) << 8) ; // 3F 3A 3C 3D
 LCD->RAM[4] |= ((digit[2]& 0x0c) << 22) | ((digit[2]& 0x03) << 8) ; // 3Q 3K 3Col 3P
 LCD->RAM[6] |= ((digit[3]& 0x0c) << 22) | ((digit[3]& 0x03) << 8) ; // 3H 3J 3DP 3N

 break;

 /* Position 4 on LCD (Digit 4)*/
 case 4:
 LCD->RAM[0] &= 0xffcff3ff;
 LCD->RAM[2] &= 0xffcff3ff;
 LCD->RAM[4] &= 0xffcff3ff;
 LCD->RAM[6] &= 0xffcff3ff;

 LCD->RAM[0] |= ((digit[0]& 0x0c) << 18) | ((digit[0]& 0x03) << 10) ; // 4G 4B 4M 4E
 LCD->RAM[2] |= ((digit[1]& 0x0c) << 18) | ((digit[1]& 0x03) << 10) ; // 4F 4A 4C 4D
 LCD->RAM[4] |= ((digit[2]& 0x0c) << 18) | ((digit[2]& 0x03) << 10) ; // 4Q 4K 4Col 4P
 LCD->RAM[6] |= ((digit[3]& 0x0c) << 18) | ((digit[3]& 0x03) << 10) ; // 4H 4J 4DP 4N

 break;

 /* Position 5 on LCD (Digit 5)*/
 case 5:
 LCD->RAM[0] &= 0xfff3cfff;
 LCD->RAM[2] &= 0xfff3cfff;
 LCD->RAM[4] &= 0xfff3efff;
 LCD->RAM[6] &= 0xfff3efff;

 LCD->RAM[0] |= ((digit[0]& 0x0c) << 16) | ((digit[0]& 0x03) << 12) ; // 5G 5B 5M 5E
 LCD->RAM[2] |= ((digit[1]& 0x0c) << 16) | ((digit[1]& 0x03) << 12) ; // 5F 5A 5C 5D
 LCD->RAM[4] |= ((digit[2]& 0x0c) << 16) | ((digit[2]& 0x01) << 12) ; // 5Q 5K 5P
 LCD->RAM[6] |= ((digit[3]& 0x0c) << 16) | ((digit[3]& 0x01) << 12) ; // 5H 5J 5N

 break;

 /* Position 6 on LCD (Digit 6)*/
 case 6:
 LCD->RAM[0] &= 0xfffc3fff;
 LCD->RAM[2] &= 0xfffc3fff;
 LCD->RAM[4] &= 0xfffc3fff;
 LCD->RAM[6] &= 0xfffc3fff;

 LCD->RAM[0] |= ((digit[0]& 0x04) << 15) | ((digit[0]& 0x08) << 13) | ((digit[0]& 0x03) <<
14) ; // 6B 6G 6M 6E
 LCD->RAM[2] |= ((digit[1]& 0x04) << 15) | ((digit[1]& 0x08) << 13) | ((digit[1]& 0x03) <<
14) ; // 6A 6F 6C 6D
 LCD->RAM[4] |= ((digit[2]& 0x04) << 15) | ((digit[2]& 0x08) << 13) | ((digit[2]& 0x01) <<
14) ; // 6K 6Q 6P
 LCD->RAM[6] |= ((digit[3]& 0x04) << 15) | ((digit[3]& 0x08) << 13) | ((digit[3]& 0x01) <<
14) ; // 6J 6H 6N

 break;

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	40	of	56	
	

 default:
 break;
 }

 LCD->SR |= LCD_SR_UDR;
 while ((LCD->SR & LCD_SR_UDD) == 0);
}

void LCD_PIN_Init(void){
 RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_GPIOCEN;

 GPIOA->MODER &= ~(0x0C03F00FC);
 GPIOA->MODER |= 0x802A00A8;

 GPIOA->AFR[0] &= ~(0x0FFF0);
 GPIOA->AFR[0] |= 0x0BBB0;
 GPIOA->AFR[1] &= ~(0x0F0000FFF);
 GPIOA->AFR[1] |= 0x0B0000BBB;

 GPIOB->MODER &= ~(0x0FFFF0FC0);
 GPIOB->MODER |= 0x0AAAA0A80;

 GPIOB->AFR[0] &= ~(0x0FFF000);
 GPIOB->AFR[0] |= 0x0BBB000;
 GPIOB->AFR[1] &= ~(0x0FFFFFFFF);
 GPIOB->AFR[1] |= 0x0BBBBBBBB;

 GPIOC->MODER &= ~(0x0FFF0FF);
 GPIOC->MODER |= 0x0AAA0AA;
 GPIOC->AFR[0] &= ~(0x0FF00FFFF);
 GPIOC->AFR[0] |= 0x0BB00BBBB;
 GPIOC->AFR[1] &= ~(0x0FFFF);
 GPIOC->AFR[1] |= 0x0BBBB;
}

void LCD_Configure(void) {
 LCD->CR &= ~LCD_CR_BIAS;
 LCD->CR |= (2UL<<5);
 LCD->CR &= ~LCD_CR_DUTY;
 LCD->CR |= (3UL<<2);
 LCD->FCR &= ~LCD_FCR_CC;
 LCD->FCR |= (4UL<<10);
 LCD->FCR &= ~LCD_FCR_PON;
 LCD->FCR |=LCD_FCR_PON_2;
 LCD->CR |= LCD_CR_MUX_SEG;
 LCD->CR &= ~LCD_CR_VSEL;

 //LCD->FCR &= LCD_FCR_PS;
 //LCD->FCR |= 0x2<<22;

 //LCD->FCR &= ~LCD_FCR_BLINK;
 //LCD->FCR |= 0x3<<16;
 //LCD->FCR &= ~LCD_FCR_BLINKF;
 //LCD->FCR |= 0x7<<13;

 while (!(LCD->SR & LCD_SR_FCRSR)) ;
 LCD->CR |= LCD_CR_LCDEN;
 while (!(LCD->CR & LCD_CR_LCDEN));
 while (!(LCD->SR & LCD_SR_RDY)) ;

}

void LCD_Clock_Init(void){
 // Note from STM32L Reference Manual:
 // After reset, the RTC Registers (RTC registers and RTC backup registers) are protected
 // against possible stray write accesses. To enable access to the RTC Registers, proceed
as

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	41	of	56	
	

 // follows:
 // 1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR
register.
 // 2. Set the DBP bit in the PWR_CR register (see Section 4.4.1).
 // 3. Select the RTC clock source through RTCSEL[1:0] bits in RCC_CSR register.
 // 4. Enable the RTC clock by programming the RTCEN bit in the RCC_CSR register.
 RCC->APB1ENR |= RCC_APB1ENR_PWREN; // Power interface clock enable
 PWR->CR |= PWR_CR_DBP; // Disable Backup Domain write protection
 RCC->CSR |= RCC_CSR_RTCSEL_LSI;// LSI oscillator clock used as RTC clock
 //LSI clock varies due to frequency dispersion
 //RCC->CSR |= RCC_CSR_RTCSEL_LSE;// LSE oscillator clock used as RTC clock
 RCC->CSR |= RCC_CSR_RTCEN; // RTC clock enable

 /* Disable the write protection for RTC registers */
 RTC->WPR = 0xCA; // RTC write protection register (WPR)
 RTC->WPR = 0x53;// Write "0xCA" and "0x53" to unlock the write protection

 // Wait until MSI clock ready
 while((RCC->CR & RCC_CR_MSIRDY) == 0); // MSI Ready Flag is set by hardware

 /* Enable comparator clock LCD */
 RCC->APB1ENR |= RCC_APB1ENR_LCDEN;

 /* Enable SYSCFG */
 RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN;

 RCC->CSR |= RCC_CSR_LSION;
 while((RCC->CSR & RCC_CSR_LSIRDY) == 0);

 /* Select LSI as LCD Clock Source */
 RCC->CSR &= ~RCC_CSR_RTCSEL_LSI;
 RCC->CSR |= RCC_CSR_RTCSEL_LSI; // LSI oscillator clock used as RTC and LCD clock
 RCC->CSR |= RCC_CSR_RTCEN;
}
void myLCD6(int color){ //postion 6
 while ((LCD->SR & LCD_SR_UDR) != 0); // Wait for Update Display Request Bit
 switch(color){
 case 1: //B
 LCD->RAM[0] &= 0xfffc3fff;
 LCD->RAM[2] &= 0xfffc3fff;
 LCD->RAM[4] &= 0xfffc35ff;
 LCD->RAM[6] &= 0xfffc35ff;

 LCD->RAM[0] |= (0x00038000) ; // 6B 6G 6M
 LCD->RAM[2] |= (0x0002C000) ; // 6A 6C 6D
 LCD->RAM[4] |= (0x00004000) ; // 6P
 LCD->RAM[6] |= (0x00020000) ; // 6J

 break;

 case 2: //W
 LCD->RAM[0] &= 0xfffc3fff;
 LCD->RAM[2] &= 0xfffc3fff;
 LCD->RAM[4] &= 0xfffc35ff;
 LCD->RAM[6] &= 0xfffc35ff;

 LCD->RAM[0] |= (0x00024000) ; // 6B 6E
 LCD->RAM[2] |= (0x00018000) ; // 6F 6C
 LCD->RAM[4] |= (0x00010000) ; // 6Q
 LCD->RAM[6] |= (0x00004000) ; // 6N
 //Delay(500);
 break;
 default:
 break;
 }
 LCD->SR |= LCD_SR_UDR;
 while ((LCD->SR & LCD_SR_UDD) == 0);
}
void myLCD5(int color){ //position 5
 while ((LCD->SR & LCD_SR_UDR) != 0); // Wait for Update Display Request Bit
 switch(color){

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	42	of	56	
	

 case 1: //B
 LCD->RAM[0] &= 0xfff3cfff;
 LCD->RAM[2] &= 0xfff3cfff;
 LCD->RAM[4] &= 0xfff3e5ff;
 LCD->RAM[6] &= 0xfff3e5ff;

 LCD->RAM[0] |= (0x000C2000) ; // 5B 5G 5M
 LCD->RAM[2] |= (0x00043000) ; // 5A 5C 5D
 LCD->RAM[4] |= (0x00001000) ; // 5P
 LCD->RAM[6] |= (0x00040000) ; // 5J

 break;

 case 2: //W
 LCD->RAM[0] &= 0xfff3cfff;
 LCD->RAM[2] &= 0xfff3cfff;
 LCD->RAM[4] &= 0xfff3e5ff;
 LCD->RAM[6] &= 0xfff3e5ff;

 LCD->RAM[0] |= (0x00041000) ; // 5B 6E
 LCD->RAM[2] |= (0x00082000) ; // 5F 5C
 LCD->RAM[4] |= (0x00080000) ; // 5Q
 LCD->RAM[6] |= (0x00001000) ; // 5N
 //Delay(500);
 break;
 default:
 break;
 }
 LCD->SR |= LCD_SR_UDR;
 while ((LCD->SR & LCD_SR_UDD) == 0);
}

void myLCD4(int color){ //position 4
 while ((LCD->SR & LCD_SR_UDR) != 0); // Wait for Update Display Request Bit
 switch(color){
 case 1: //B
 LCD->RAM[0] &= 0xffcff3ff;
 LCD->RAM[2] &= 0xffcff3ff;
 LCD->RAM[4] &= 0xffcff5ff;
 LCD->RAM[6] &= 0xffcff5ff;

 LCD->RAM[0] |= (0x00300800) ; // 4G 4B 4M
 LCD->RAM[2] |= (0x00100C00) ; // 4A 4C 4D
 LCD->RAM[4] |= (0x00000400) ; // 4P
 LCD->RAM[6] |= (0x00100000) ; // 4J

 break;

 case 2: //W
 LCD->RAM[0] &= 0xffcff3ff;
 LCD->RAM[2] &= 0xffcff3ff;
 LCD->RAM[4] &= 0xffcff5ff;
 LCD->RAM[6] &= 0xffcff5ff;

 LCD->RAM[0] |= (0x00100400) ; // 4B 4E
 LCD->RAM[2] |= (0x00200800) ; // 4F 4C
 LCD->RAM[4] |= (0x00200000) ; // 4Q
 LCD->RAM[6] |= (0x00000400) ; // 4N
 //Delay(500);
 break;
 default:
 break;
 }
 LCD->SR |= LCD_SR_UDR;
 while ((LCD->SR & LCD_SR_UDD) == 0);
}
void myLCD3(int color){ //position 3
 while ((LCD->SR & LCD_SR_UDR) != 0); // Wait for Update Display Request Bit
 switch(color){
 case 1: //B
 LCD->RAM[0] &= 0xfcfffcff;

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	43	of	56	
	

 LCD->RAM[2] &= 0xfcfffcff;
 LCD->RAM[4] &= 0xfcfff5ff;
 LCD->RAM[6] &= 0xfcfff5ff;

 LCD->RAM[0] |= (0x03000200) ; // 3G 3B 3M
 LCD->RAM[2] |= (0x01000300) ; // 3A 3C 3D
 LCD->RAM[4] |= (0x00000100) ; // 3P
 LCD->RAM[6] |= (0x01000000) ; // 3J
 break;
 case 2: //W
 LCD->RAM[0] &= 0xfcfffcff;
 LCD->RAM[2] &= 0xfcfffcff;
 LCD->RAM[4] &= 0xfcfff5ff;
 LCD->RAM[6] &= 0xfcfff5ff;

 LCD->RAM[0] |= (0x01000100) ; // 3B 3E
 LCD->RAM[2] |= (0x02000200) ; // 3F 3C
 LCD->RAM[4] |= (0x02000000) ; // 3Q
 LCD->RAM[6] |= (0x00000100) ; // 3N
 //Delay(500);
 break;
 default:
 break;
 }
 LCD->SR |= LCD_SR_UDR;
 while ((LCD->SR & LCD_SR_UDD) == 0);
}

void LCD_Display(uint16_t data){ //SIDE SENSOR
 uint16_t cm=0;
 uint8_t num[2], distance;
 uint8_t i;
 uint8_t count;

 cm =(4096 * 1000)/((300 * data) - 13 * 4096); // good formula for side sensor (0A41SK)
 //cm -= 4;
 if (cm > 30)
 cm = 30;
 if (cm < 4)
 cm =4;

 num[0] = cm/10;
 num[1] = cm%10;

 for(i = 0; i<2; i++)
 {
 distance = num[i] + 48;
 LCD_WriteChar(&distance,0,0,i+1,cm);
 }
}
void LCD_Display_2(uint16_t data){ //FRONT SENSOR
 uint16_t cm=0;
 uint8_t num[2], distance;
 uint8_t i;
 uint8_t count;

 cm =(4096 * 1000)/((155 * data) - 13 * 4096); // good formula for front sesnor (2Y0A21)
 //cm -= 4;
 if (cm > 30)
 cm = 30;
 if (cm < 4)
 cm =4;
 num[0] = cm/10;
 num[1] = cm%10;

 for(i = 0; i<2; i++)
 {
 distance = num[i] + 48;
 LCD_WriteChar(&distance,0,0,i+4,cm);
 }
}

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	44	of	56	
	

APPENDIX	B:	Header	Files	for	Distance	Sensors	and	Reflectance	Sensors	

Distance	Sensor	.h	File:	
void distance(void);
void distance();
 RCC->AHBENR |=RCC_AHBENR_GPIOAEN; //Enable GPIOA for ultrasonic
//Set PA 4 as analog input
// BY DEFINITION PA 4 HAS ANALOG INPUT SIGNAL CONNECTED TO CHANNEL 4
// ADC_IN4
 GPIOA->MODER &= ~(0x03 << (2*4));
 GPIOA->MODER |= (0x03 << (2*4)); // 11 is analog

 // Set PA 5
 GPIOA->MODER &= ~(0x03 << (2*5));
 GPIOA->MODER |= (0x03 << (2*5));

 //I/O at 2MHz low speed 01
 GPIOA->OSPEEDR &= ~(0x03 << (2*4)); //bit clear
 GPIOA->OSPEEDR |= (0x01 << (2*4)); // or 01 on PA4

 GPIOA->OSPEEDR &= ~(0x03 << (2*5)); //bit clear
 GPIOA->OSPEEDR |= (0x01 << (2*5)); // or 01 on PA5

 //output push pull state
 GPIOA->OTYPER &= ~(1<<4); //Reset state 0 on PA4
 GPIOA->OTYPER &= ~(1<<5); //Reset state 0 on PA5

 //Pull up Pull down Register
 GPIOA->PUPDR &= ~(0x03 << (2*4)); //clears for no pupdr
 GPIOA->PUPDR &= ~(0x03 << (2*5)); //clears for no pupdr
//------------------------------
 RCC->CR |= RCC_CR_HSION;
 while ((RCC->CR & RCC_CR_HSIRDY)==0);
 RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
 ADC1->CR1 &= ~(ADC_CR1_RES); //reset
 ADC1->CR1 |= ADC_CR1_EOCIE; //end of conversion
 ADC1->CR1 |= (ADC_CR1_SCAN); //scan
 ADC1->SQR1 &= ~ADC_SQR1_L; // clears 00000 for 1 conversion
 ADC1->SQR5 |= (4&ADC_SQR5_SQ1); // 1st conversion in regular sequence
 ADC1->SMPR3 &= ~ADC_SMPR3_SMP4;
 ADC1->SMPR3 |= ADC_SMPR3_SMP4; // 111: 384 cycles for channel 4
 ADC1->CR2 &= ~(ADC_CR2_DELS); //clear delay
 ADC1->CR2 |= (ADC_CR2_DELS_0); //no delay
 ADC1->CR2 |= ADC_CR2_ADON; //AD converter on
 ADC1->CR2 &= ~(ADC_CR2_EXTEN); //trigger on rising edge bit clear
 ADC1->CR2 |= (0x03)<<28; //trigger on rising edge

 ADC1->CR2 |= ADC_CR2_SWSTART; //start of conversion
}

uint16_t sensor_side(uint16_t data){ //SIDE SENSOR
 uint16_t cm=0;
 uint8_t num[2], distance;
 uint8_t i;
 uint8_t count;

 cm =(4096 * 1000)/((155 * data) - 13 * 4096); // good formula for side sensor (0A41SK)
 //cm -= 4;
 if (cm > 40) // constrain the results to be between 4 and 40
 cm = 40;
 if (cm < 4)
 cm =4;

 num[0] = cm/10; // lcd purpose
 num[1] = cm%10;

 return cm;
}

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	45	of	56	
	

uint16_t sensor_front(uint16_t data){ //FRONT SENSOR
 uint16_t cm=0;
 uint8_t num[2], distance;
 uint8_t i;
 uint8_t count;

 cm =(4096 * 1000)/((155 * data) - 13 * 4096); // good formula for front sesnor (2Y0A21)
 //cm -= 4;
 if (cm > 30)
 cm = 30;
 if (cm < 4)
 cm =4;

 num[0] = cm/10;
 num[1] = cm%10;

 return cm;
}	

	

REFLECTANCE	SENSORS	.h	File:		
//**
// HEader file including reflectance sensor implementation
// Each of the functions returns a hexadecimal
// which represents the position of the actual reflectance sensor
// from left to right.
// Returned from each funtion is a hex value 0x1000,0x0100,0x0010, 0x0001
//**
#include <stdbool.h> // importated library used for booleans
uint32_t sensor_1000()
{
 int8_t count;
 uint8_t color[2];

 color[0] = 'B';
 color[1] = 'W';
 //First reflective sensor (PA11)
 GPIOA->MODER &= ~(0x03 << (2*11));
 GPIOA->MODER |= (0x01 << (2*11));
 GPIOA->ODR = 0x1 << 11; // turn on the pin then delay it
 Delay(50);

 count = 0;
 GPIOA->MODER &= ~(0x03 << (2*11));

 while (GPIOA->IDR & 0x800)
 count++;
 Delay(50);
 if (count > 10){

 return 0x1000; // value returned to use in final move
 }
 else{

 return 0x0000; // value returned to use in final move
 }
}
uint32_t sensor_0100()
{
 int8_t count;
 uint8_t color[2];

 color[0] = 'B';
 color[1] = 'W';
 //Second reflective sensor (PA12)
 GPIOA->MODER &= ~(0x03 << (2*12));
 GPIOA->MODER |= (0x01 << (2*12));
 GPIOA->ODR = 0x1 << 12; // turn on the pin then delay it
 Delay(50);

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	46	of	56	
	

 count = 0;
 GPIOA->MODER &= ~(0x03 << (2*12));

 while (GPIOA->IDR & 0x1000)
 count++;
 Delay(50);
 if (count > 10)
 {
 return 0x0100; // value returned to use in final move
 }
 Else
 {
 return 0x0000; // value returned to use in final move
 }
}
uint32_t sensor_0010()
{
 int8_t count;
 uint8_t color[2];

 color[0] = 'B';
 color[1] = 'W';
 //Third reflective sensor (PB6)
 GPIOB->MODER &= ~(0x03 << (2*6));
 GPIOB->MODER |= (0x01 << (2*6));
 GPIOB->ODR = 0x1 << 6; // turn on the pin then delay it
 Delay(50);

 count = 0;
 GPIOB->MODER &= ~(0x03 << (2*6));

 while (GPIOB->IDR & 0x40)
 count++;
 Delay(50);
 if (count > 10)
 {
 return 0x0010; // value returned to use in final move
 }
 Else
 {
 return 0x0000; // value returned to use in final move
 }
}
uint32_t sensor_0001()
{
 int8_t count;
 uint8_t color[2];
 color[0] = 'B';
 color[1] = 'W';
 //Fourth reflective sensor (PB7)
 GPIOB->MODER &= ~(0x03 << (2*7));
 GPIOB->MODER |= (0x01 << (2*7));
 GPIOB->ODR = 0x1 << 7; // turn on the pin then delay it
 Delay(50);

 count = 0;
 GPIOB->MODER &= ~(0x03 << (2*7));

 while (GPIOB->IDR & 0x80)
 count++;
 Delay(50);
 if (count > 10)
 {
 return 0x0001; // value returned to use in final move
 }
 Else
 {
 return 0x0000; // value returned to use in final move
 }
}

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	47	of	56	
	

APPEDIX	C	:	All	.C	files	Used		
	

Draw	Bot	.c	File:		
//**
// Draw bot for art drawing implemenation
// consist of for loops which have fine tuned motor control
// motors contained in a specified header file
//**
#include "stm32l1xx.h"
#include "math.h"
#include "motor_header.h"
#include "system_clock.h"

int main(void)
{
 uint16_t i=0,j=0;
 uint16_t motor_delay=5;
 uint16_t motor_delay_draw=10;

 //variables used to make it easier to change the amount of
 // corner lenght , line length , or geometry of the shape being drawn
 uint16_t straight=300;
 uint16_t straight_less = 200;
 uint16_t r_big = 100;
 uint16_t r_little = 50;
 uint16_t turn=220;
 uint16_t less_90 =200;
 uint16_t more_90 =300;

 Motor motor_right; //RIGHT MOTOR
 Motor motor_left; //LEFT MOTOR

 if (SysTick_Config(SystemCoreClock / 1000)) { // SysTick 1 msec interrupts
 while (1); // Capture error
 }

 Motor_Init(); // initilozing the PB AND PC PINS FOR MOTOR
 motor_right.step = 0; // right motor
 motor_right.totalSteps = 0; //right motor

 motor_left.step = 0; // left motor
 motor_left.totalSteps = 0; //left motor

//**
//** By changing the timings you can draw any shape one desires
// and adding more for loops
// as it stand it draws a ballon
//**
 while (1)
 {
 for(i=0; i<2190; i++)
 {
 StepMotor_half_right(&motor_right); // BIG PERFECT CIRCLE
 Delay (motor_delay_draw);
 }
 for(i=0; i<turn; i++)
 {
 StepMotor_half_right_reverse(&motor_right); //90 after circle
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<straight_less; i++)
 {

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	48	of	56	
	

 StepMotor_half_right(&motor_right); //straight A
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<turn; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // 90 turn at A
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<straight_less; i++)
 {
 StepMotor_half_right(&motor_right); // a - b
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<less_90; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // a - b
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<straight_less; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // b- c
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<less_90; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // 1
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<r_little; i++)
 {
 StepMotor_half_right(&motor_right); // r little
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<more_90; i++)
 {
 StepMotor_half_right(&motor_right); // 2
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<r_big; i++)
 {
 StepMotor_half_right(&motor_right); // r big
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<more_90; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // 3
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<r_big; i++)
 {
 StepMotor_half_right(&motor_right); // r big

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	49	of	56	
	

 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<more_90; i++)
 {
 StepMotor_half_right(&motor_right); // 4
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<more_90; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // 5
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<r_little; i++)
 {
 StepMotor_half_right(&motor_right); // r big
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<less_90; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // 5
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<straight_less; i++)
 {
 StepMotor_half_right(&motor_right); // 5
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<turn; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // 90
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<straight; i++)
 {
 StepMotor_half_right(&motor_right); // 5
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<turn; i++)
 {
 StepMotor_half_right_reverse(&motor_right); // straight90
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<straight_less; i++)
 {
 StepMotor_half_right(&motor_right); // straight 5
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }

 break;
 } //end main

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	50	of	56	
	

Line	Follower	.c	File:	
//******************** Line Following Robot ******************************
// Contains LCD and Reflectance sensor implementation
//***

#include "stm32l1xx.h"
#include "math.h"
#include <stdbool.h>
#include "motor_header.h"
//#include "LCD_header.h" //***************** LCD Testing uncomment if want to use
#include "system_clock.h"
#include "reflector_sensors_header.h"

//void LCD_Display_Result(void);

int main(void) {
 uint32_t final_move = 0x0000; // hexadeximal number used to determine each case
 uint32_t move[4];

 static int check =0; // checking which case statement is met
 int i=0;
 Motor motor_right; //RIGHT MOTOR
 Motor motor_left; //LEFT MOTOR
 //Delays for speed testing
 int motor_delay = 5;
 int led_delay =2;

 //LCD_Clock_Init(); //***************** LCD Testing uncomment if want to use
 if (SysTick_Config(SystemCoreClock / 1000)) { /* SysTick 1 msec interrupts */
while (1); /* Capture error */
 }
 Motor_Init(); // initilozing the PB AND PC PINS FOR MOTOR
 motor_right.step = 0; // right motor
 motor_right.totalSteps = 0; //right motor

 motor_left.step = 0; // left motor
 motor_left.totalSteps = 0; //left motor
// LCD_PIN_Init(); //***************** LCD Testing uncomment if want to use
// LCD_Configure(); //***************** LCD Testing uncomment if want to use
 while(1)
 {
 final_move =0; // final move variable clearing to move to the next move
 move[0] = sensor_1000(); // sensor 1
 move[1] = sensor_0100(); //sensor 2
 move[2] = sensor_0010(); // sensor 3
 move[3] = sensor_0001(); // sensor 4

 //this is for led motor testing
 GPIOA->MODER &= ~(0xF0); //pa2 and 3
 GPIOA->MODER |= 0x50;

 // this is the driver of the system , the robot reacts based on the
 // hexadecimal number that comes in for final_move
final_move = move[0]| move[1]| move[2] | move[3]; // check wich condition is met based on the
hexadecimal combination
 switch(final_move) // This Checks the final move to see what the motors need to do
 { // based on the comination for final move Hexadecimal number it does the
 case corresponding
 case 0x0000: // the motor turns the amount of loops in each for loop
 so some cases might go longer than others
 for(i=0; i<30; i++) // depending on the condition of the robot.
 {
 StepMotor_half_left_reverse(&motor_left);
 Delay(motor_delay);
 StepMotor_half_right_reverse(&motor_right);
 Delay(motor_delay);
 }
 check = 1;
 break;

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	51	of	56	
	

 case 0x0001 :
 for(i=0; i<30; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right_reverse(&motor_right);
 Delay (motor_delay);
 }
 for(i=0; i<50; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 }
 check = 2;
 break;

 case 0x0010 :
 for(i=0; i<20; i++)
 {
 StepMotor_half_left_reverse(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 }
 for(i=0; i<50; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 }
 check = 3;
 break;

 case 0x0011 :
 for(i=0; i<50; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right_reverse(&motor_right);
 Delay (motor_delay);
 }
 for(i=0; i<60; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 }
 check = 4;
 break;

 case 0x0100 :
 for(i=0; i<20; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay(motor_delay);
 StepMotor_half_left_reverse(&motor_left);
 Delay(motor_delay);
 }
 for(i=0; i<50; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay(motor_delay);
 StepMotor_half_left(&motor_left);
 Delay(motor_delay);
 }

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	52	of	56	
	

 GPIOA->ODR = 0x1 << 2;
 Delay(2);
 check = 5;
 break;

 case 0x0101 :
 for(i=0; i<30; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay(motor_delay);
 StepMotor_half_left(&motor_left);
 Delay(motor_delay);
 }
 GPIOA->ODR = 0x1 << 3;
 Delay(2);

 check = 6;
 break;

 case 0x0110 :
 for(i=0; i<110; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay(motor_delay);
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 }
 check = 7;
 break;

 case 0x0111 :

 for(i=0; i<50; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right_reverse(&motor_right);
 Delay (motor_delay);
 }
 for(i=0; i<100; i++)
 {
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 }

 GPIOA->ODR = 0x1 << 3;
 Delay(2);
 check = 8;
 break;

 case 0x1000:

 for(i=0; i<30; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<90; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 GPIOA->ODR = 0x1 << 2;
 Delay(2);
 check = 10;

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	53	of	56	
	

 break;

 case 0x1001:
 for(i=0; i<30; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 GPIOA->ODR = 0x1 << 2;
 Delay(2);
 check = 10;
 break;

 case 0x1010 :
 for(i=0; i<30; i++)
 {
 StepMotor_half_right_reverse(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<50; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 GPIOA->ODR = 0x1 << 2;
 Delay(2);
 check = 11;
 break;

 case 0x1011 :
 for(i=0; i<20; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<50; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 GPIOA->ODR = 0x1 << 2;
 Delay(2);
 check = 12;
 break;

 case 0x1100 :

 for(i=0; i<30; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<50; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	54	of	56	
	

 GPIOA->ODR = 0x1 << 2;
 Delay(2);
 check = 13;
 break;

 case 0x1101 :
 for(i=0; i<30; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left);

 Delay (motor_delay);
 }
 for(i=0; i<50; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }

 GPIOA->ODR = 0x1 << 2;
 Delay(2);
 check = 14;
 break;

 case 0x1110 :
 for(i=0; i<40; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left_reverse(&motor_left);
 Delay (motor_delay);
 }
 for(i=0; i<50; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 GPIOA->ODR = 0x1 << 2;
 Delay(2);
 check = 15;
 break;

 case 0x1111 :
 for(i=0; i<50; i++)
 {
 StepMotor_half_right(&motor_right);
 Delay (motor_delay);
 StepMotor_half_left(&motor_left);
 Delay (motor_delay);
 }
 check = 16;
 break;
 }
 i=0;
 }
}

	

	

	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	55	of	56	
	

Maze	Follower	.c	file:		
#include	"stm32l1xx.h"	
#include	"math.h"	
//#include	"LCDmainHeader.h"			////**************Uncomment	to	use	the	LCD	*****************LCD	
#include	"distanceSensors.h"	
#include	"motor_header.h"	
#include	"system_clock.h"					
	
	
int	main(void)	
{		uint16_t	result2,result,	result1,counter=0;		//variables	needed	for	conversions	
			uint16_t	front_sensor	=0,side_sensor=0;						//	seperating	front	and	side	sensor	
			uint16_t	i=0,j=0;	
			uint16_t	motor_delay=5;			//	motor	delay	defines	the	speed	of	the	robot		
	 	
		Motor	motor_right;	//RIGHT	MOTOR	
		Motor	motor_left;	//LEFT	MOTOR	
	
//	 LCD_Clock_Init();				//*****************Uncomment	to	use	the	LCD**********************LCD	
	 if	(SysTick_Config(SystemCoreClock	/	1000))	{	//	SysTick	1	msec	interrupts			
			while	(1);																																		//	Capture	error															
	}	
	
		//LCD_PIN_Init();				//****************Uncoment	To	use	the	LCD**************************LCD	
		//LCD_Configure();			//****************UNComment	To	use	the	LCD*************************LCD	
		distance();	
		Motor_Init();		//	initilozing	the	PB	AND	PC	PINS	FOR	MOTOR	
		motor_right.step	=	0;								//	right	motor	
		motor_right.totalSteps	=	0;		//right	motor	
	 	
		motor_left.step	=	0;								//	left	motor	
		motor_left.totalSteps	=	0;		//left	motor	
		
	while	(1)	
	 	{	
						ADC1->CR2	|=	ADC_CR2_SWSTART;		//ADC	Conversion	
	 	 		
						if(!(ADC1->SR	&	ADC_SR_EOC))	
	 {	
	 			result1	=	ADC1->DR;	
	 		//LCD_Display_2(result1);			//***************uncomment	to	view	LCD********************LCD	
	 		front_sensor=	 sensor_front(result1);	
	 }	 		
	 if((ADC1->SR	&	ADC_SR_EOC))	
	 {	 	
	 		result2	=	ADC1->DR;	
	 		//LCD_Display(result2);				//***************uncomment	to	view	LCD*********************LCD	
	 		side_sensor=	sensor_side(result2);	
	 }	
	
	 //	below	are	the	conditions	in	which	the	robot	will	face	moving	throught	the	maze	
	 if(side_sensor	>=	10		&&	side_sensor	<=	20)			//	if	is	between	10	and	20cm	away	then	keep	moving	foward	
	 	 {	 		
	 	 			for(i=0;	i<4;	i++)	
	 	 		{	
	 	 	 StepMotor_half_right(&motor_right);	//	half	step	stepper	motor	right	
	 	 	 Delay	(motor_delay);	
	 	 	 StepMotor_half_left(&motor_left);	//	half	step	stepper	motor	left	
	 	 	 Delay	(motor_delay);		
	 	 		}		
	 	 }	 	
	 	 	
	
	

EGRE	364		 Final	Project	Report	 Jose	Ramirez	
	 	 Quan	Ma	

Page	56	of	56	
	

	
	
	
	 	else	if	(side_sensor	<	10)			//	if	it	gets	less	than	10cm	then	shift	a	bit	to	the	left	
	 	 {	
	 	 			 for(i=0;	i<3;	i++)	
	 	 	 	 	{	
	 	 	 	 	StepMotor_half_right(&motor_right);	//	half	step	stepper	motor	right	
	 	 	 	 	Delay	(motor_delay);	
	 	 	 	 	StepMotor_half_left_reverse(&motor_left);	//	half	step	stepper	motor	left	
	 	 	 	 	Delay	(motor_delay);		
	 	 	 	 	}		 	 		
	 	 }	
	 else	if	(side_sensor	>	20	&&	side_sensor	<	30)			//	if	is	greater	than	20	cm	and	less	than	30cm	adjust	yourself	to	move	right	
	 	 {	
	 	 			 for(i=0;	i<30;	i++)	
	 	 	 	 	{	
	 	 	 	 	StepMotor_half_right_reverse(&motor_right);	//	half	step	stepper	motor	right	reverse	
	 	 	 	 	Delay	(motor_delay);	
	 	 	 	 	StepMotor_half_left(&motor_left);	//	half	step	stepper	motor	left	
	 	 	 	 	Delay	(motor_delay);		
	 	 	 	 	}		 	 	 	 					 	 	 	 		
	 	 }	
	 else	if	(side_sensor	>=	30)			//	if	it	become	greater	than	30	then	perform	the	turn	right	sequence		
	 	 {	
	 	 			 for(i=0;	i<	400;	i++)	
	 	 	 	 	{				
	 	 	 	 	StepMotor_half_right(&motor_right);	//	half	step	stepper	motor	right	
	 	 	 	 	Delay	(motor_delay);	
	 	 	 	 	StepMotor_half_left(&motor_left);	//	half	step	stepper	motor	left	
	 	 	 	 	Delay	(motor_delay);		
	 	 	 	 	}		
	 	 	 	 	for(i=0;	i<150;	i++)	
	 	 	 	 	{	
	 	 	 	 	StepMotor_half_right_reverse(&motor_right);	//	half	step	stepper	motor	right	reverse	
	 	 	 	 	Delay	(motor_delay);	
	 	 	 	 	StepMotor_half_left(&motor_left);	//	half	step	stepper	motor	left	
	 	 	 	 	Delay	(motor_delay);		
	 	 	 	 	}		 	 		
	 	 	}	
	 	}//	end	of	while	loop	
}	//end	main	
		

